Things about Android.........
Android Compatibility
Android is designed to run on many different types of devices. For developers, the range and number of devices means a huge potential audience: the more devices that run Android apps, the more users who can access your app. In exchange, however, it also means that your apps will have to cope with that same variety of hardware.
Fortunately, Android has built-in tools and support that make it easy for your apps to do that, while at the same time letting you maintain control of what types of devices your app is available to. With a bit of forethought and some minor changes in your app's manifest file, you can ensure that users whose devices can’t run your app will never see it in the Android Market, and will not get in trouble by downloading it. This page explains how you can control which devices have access to your apps, and how to prepare your apps to make sure they reach the right audience.
What does “compatibility” mean?
A device is “Android compatible” if it can correctly run apps written for the Android execution environment. The exact details of the Android execution environment are defined by the Android Compatibility Definition Document, but the single most important characteristic of a compatible device is the ability to install and correctly run an Android .apk file.
There is exactly one Android API for each API level, and it’s the same API no matter what kind of device it’s installed on. No parts of the API are optional, and you never have to worry about parts of the API missing on some devices. Every compatible Android device your app will land on will include every class and every API for that API level.
Of course, some APIs won’t work correctly if a particular device lacks the corresponding hardware or feature. But that’s not a problem: we also designed Android to prevent apps from being visible to devices which don’t have features the apps require. We’ve built support for this right into the SDK tools, and it’s part of the Android platform itself, as well as Android Market.
As a developer, you have complete control of how and where your apps are available. Android provides tools as a first-class part of the platform that let you manage this. You control the availability of your apps, so that they reach only the devices capable of running them.
How does it work?
You manage your app’s availability through a simple three-step process:
You state the features your app requires by declaring <uses-feature> elements its manifest file.
Devices are required to declare the features they include to Android Market.
Android Market uses your app’s stated requirements to filter it from devices that don’t meet those requirements.
This way, users never even see apps that won’t work properly on their devices. As long as you accurately describe your app’s requirements, you don’t need to worry about users blaming you for compatibility problems.
If you’re familiar with web development, you may recognize this model as “capability detection”. Web developers typically prefer this approach to “browser detection”, because it’s very difficult to keep up as new browsers and new versions of current browsers are released. By checking for support for specific required capabilities instead of the current browser, web developers get better fine-grained control. That’s the same approach Android uses: since it’s impossible to keep up with all the Android devices being released, you instead use the fine-grained controls Android provides.
Filtering for technical reasons
Filtering on Android Market
Android Market filters the applications that are visible to users, so that users can see and download only those applications that are compatible with their devices.
One of the ways Market filters applications is by feature compatibility. To do this, Market checks the <uses-feature> elements in each application's manifest, to establish the app's feature needs. Market then shows or hides the application to each user, based on a comparison with the features available on the user's device.
For information about other filters that you can use to control the availability of your apps, see the Market Filters document.
Android includes support for a lot of features, some hardware and some software. Examples include compass and accelerometer sensors, cameras, and Live Wallpapers. However, not every device will support every feature. For instance, some devices don’t have the hardware horsepower to display Live Wallpapers well.
To manage this, Android defines feature IDs. Every capability has a corresponding feature ID defined by the Android platform. For instance, the feature ID for compass is “android.hardware.sensor.compass”, while the feature ID for Live Wallpapers is “android.software.live_wallpapers”. Each of these IDs also has a corresponding Java-language constant on the PackageManager class that you can use to query whether feature is supported at runtime. As Android adds support for new features in future versions, new feature IDs will be added as well.
When you write your application, you specify which features your app requires by listing their feature IDs in <uses-feature> elements in the AndroidManifest.xml file. This is the information that Android Market uses to match your app to devices that can run it. For instance, if you state that your app requires android.software.live_wallpapers, it won’t be shown to devices that don’t support Live Wallpapers.
This puts you in total control of your app — because you don’t have to declare these features. Consider an example involving cameras.
If you’re building a really impressive next-generation augmented-reality app, your app won’t function at all without a camera. However, if you’re building a shopping app that only uses the camera for barcode scanning, users without cameras might still find it useful even if they can’t scan barcodes. While both apps need to acquire the permission to access the camera, only the first app needs to state that it requires a camera. (The shopping app can simply check at runtime and disable the camera-related features if there’s no camera present.)
Since only you can say what the best approach is for your app, Android provides the tools and lets you make your own tradeoff between maximizing audience size and minimizing development costs.
Filtering for business reasons
It’s possible that you may need to restrict your app’s availability for business or legal reasons. For instance, an app that displays train schedules for the London Underground is unlikely to be useful to users outside the United Kingdom. Other apps might not be permitted in certain countries for business or legal reasons. For cases such as these, Android Market itself provides developers with filtering options that allow them control their app’s availability for non-technical reasons.
The help information for Android Market provides full details, but in a nutshell, developers can use the Market publisher UI to:
List the countries an app is available in.
Select which carrier’s users are able to access the app.
Filtering for technical compatibility (such as required hardware components) is always based on information contained within your .apk file. But filtering for non-technical reasons (such as geographic restrictions) is always handled in the Market user interface.
Future-proofing
There’s one additional quirk that we haven’t yet addressed: protecting apps from changes made to future versions of Android. If the Android platform introduces a new feature or changes how existing features are handled, what happens to existing apps that were written without any knowledge of the new behavior?
Simply put, Android commits to not making existing apps available to devices where they won’t work properly, even when the platform changes. The best way to explain this is through examples, so here are two:
Android 1.0 through 1.5 required a 2 megapixel camera with auto-focus. However, with version 1.6, Android devices were permitted to omit the auto-focus capability, though a (fixed-focus) camera was still required. Some apps such as barcode scanners do not function as well with cameras that do not auto-focus. To prevent users from having a bad experience with those apps, existing apps that obtain permission to use the Camera were assumed by default to require auto-focus. This allowed Android Market to filter those apps from devices that lack auto-focus.
Android 2.2, meanwhile, allowed the microphone to be optional on some devices, such as set-top boxes. Android 2.2 included a new feature ID for the microphone which allows developers to filter their apps if necessary, but — as with camera — apps that obtain permission to record audio are assumed to require the microphone feature by default. If your app can use a microphone but doesn’t strictly need it, you can explicitly state that you don’t require it; but unless you do that, your app won’t be shown to devices without microphones.
In other words, whenever Android introduces new features or changes existing ones, we will always take steps to protect existing applications so that they don’t end up being available to devices where they won’t work.
This is implemented, in part, using the aapt tool in the SDK. To see which features your app explicitly requires or is implicitly assumed to require, you can use the command aapt dump badging.
Conclusion
The goal of Android is to create a huge installed base for developers to take advantage of. One of the ways we will achieve this is through different kinds of hardware running the same software environment. But we also recognize that only developers know which kinds of devices their apps make sense on. We’ve built in tools to the SDK and set up policies and requirements to ensure that developers remain in control of their apps, today and in the future. With the information you just read, and the resources listed in the sidebar of this document, you can publish your app with the confidence that only users who can run it will see it.
For more information about Android device compatibility, please visit:
http://source.android.com/compatibility/index.html
Supporting Multiple Screens
Android runs on a variety of devices that offer different screen sizes and densities. For applications, the Android system provides a consistent development environment across devices and handles most of the work to adjust each application's user interface to the screen on which it is displayed. At the same time, the system provides APIs that allow you to control your application's UI for specific screen sizes and densities, in order to optimize your UI design for different screen configurations. For example, you might want a UI for tablets that's different from the UI for handsets.
Although the system performs scaling and resizing to make your application work on different screens, you should make the effort to optimize your application for different screen sizes and densities. In doing so, you maximize the user experience for all devices and your users believe that your application was actually designed for their devices—rather than simply stretched to fit the screen on their devices.
By following the practices described in this document, you can create an application that displays properly and provides an optimized user experience on all supported screen configurations, using a single .apk file.
Note: The information in this document assumes that your application is designed for Android 1.6 (API Level 4) or higher. If your application supports Android 1.5 or lower, please first read Strategies for Android 1.5.
Also, be aware that Android 3.2 has introduced new APIs that allow you to more precisely control the layout resources your application uses for different screen sizes. These new features are especially important if you're developing an application that's optimized for tablets. For details, see the section about Declaring Tablet Layouts for Android 3.2.
Overview of Screens Support
This section provides an overview of Android's support for multiple screens, including: an introduction to the terms and concepts used in this document and in the API, a summary of the screen configurations that the system supports, and an overview of the API and underlying screen-compatibility features.
Terms and concepts
Screen size
Actual physical size, measured as the screen's diagonal.
For simplicity, Android groups all actual screen sizes into four generalized sizes: small, normal, large, and extra large.
Screen density
The quantity of pixels within a physical area of the screen; usually referred to as dpi (dots per inch). For example, a "low" density screen has fewer pixels within a given physical area, compared to a "normal" or "high" density screen.
For simplicity, Android groups all actual screen densities into four generalized densities: low, medium, high, and extra high.
Orientation
The orientation of the screen from the user's point of view. This is either landscape or portrait, meaning that the screen's aspect ratio is either wide or tall, respectively. Be aware that not only do different devices operate in different orientations by default, but the orientation can change at runtime when the user rotates the device.
Resolution
The total number of physical pixels on a screen. When adding support for multiple screens, applications do not work directly with resolution; applications should be concerned only with screen size and density, as specified by the generalized size and density groups.
Density-independent pixel (dp)
A virtual pixel unit that you should use when defining UI layout, to express layout dimensions or position in a density-independent way.
The density-independent pixel is equivalent to one physical pixel on a 160 dpi screen, which is the baseline density assumed by the system for a "medium" density screen. At runtime, the system transparently handles any scaling of the dp units, as necessary, based on the actual density of the screen in use. The conversion of dp units to screen pixels is simple: px = dp * (dpi / 160). For example, on a 240 dpi screen, 1 dp equals 1.5 physical pixels. You should always use dp units when defining your application's UI, to ensure proper display of your UI on screens with different densities.
Range of screens supported
Starting with Android 1.6 (API Level 4), Android provides support for multiple screen sizes and densities, reflecting the many different screen configurations that a device may have. You can use features of the Android system to optimize your application's user interface for each screen configuration and ensure that your application not only renders properly, but provides the best user experience possible on each screen.
To simplify the way that you design your user interfaces for multiple screens, Android divides the range of actual screen sizes and densities into:
A set of four generalized sizes: small, normal, large, and xlarge
Note: Beginning with Android 3.2 (API level 13), these size groups are deprecated in favor of a new technique for managing screen sizes based on the available screen width. If you're developing for Android 3.2 and greater, see Declaring Tablet Layouts for Android 3.2 for more information.
A set of four generalized densities: ldpi (low), mdpi (medium), hdpi (high), and xhdpi (extra high)
The generalized sizes and densities are arranged around a baseline configuration that is a normal size and mdpi (medium) density. This baseline is based upon the screen configuration for the first Android-powered device, the T-Mobile G1, which has an HVGA screen (until Android 1.6, this was the only screen configuration that Android supported).
Each generalized size and density spans a range of actual screen sizes and densities. For example, two devices that both report a screen size of normal might have actual screen sizes and aspect ratios that are slightly different when measured by hand. Similarly, two devices that report a screen density of hdpi might have real pixel densities that are slightly different. Android makes these differences abstract to applications, so you can provide UI designed for the generalized sizes and densities and let the system handle any final adjustments as necessary. Figure 1 illustrates how different sizes and densities are roughly categorized into the different size and density groups.
Figure 1. Illustration of how Android roughly maps actual sizes and densities to generalized sizes and densities (figures are not exact).
As you design your UI for different screen sizes, you'll discover that each design requires a minimum amount of space. So, each generalized screen size above has an associated minimum resolution that's defined by the system. These minimum sizes are in "dp" units—the same units you should use when defining your layouts—which allows the system to avoid worrying about changes in screen density.
xlarge screens are at least 960dp x 720dp
large screens are at least 640dp x 480dp
normal screens are at least 470dp x 320dp
small screens are at least 426dp x 320dp
Note: These minimum screen sizes were not as well defined prior to Android 3.0, so you may encounter some devices that are mis-classified between normal and large. These are also based on the physical resolution of the screen, so may vary across devices—for example a 1024x720 tablet with a system bar actually has a bit less space available to the application due to it being used by the system bar.
To optimize your application's UI for the different screen sizes and densities, you can provide alternative resources for any of the generalized sizes and densities. Typically, you should provide alternative layouts for some of the different screen sizes and alternative bitmap images for different screen densities. At runtime, the system uses the appropriate resources for your application, based on the generalized size or density of the current device screen.
You do not need to provide alternative resources for every combination of screen size and density. The system provides robust compatibility features that can handle most of the work of rendering your application on any device screen, provided that you've implemented your UI using techniques that allow it to gracefully resize (as described in the Best Practices, below).
Note: The characteristics that define a device's generalized screen size and density are independent from each other. For example, a WVGA high-density screen is considered a normal size screen because its physical size is about the same as the T-Mobile G1 (Android's first device and baseline screen configuration). On the other hand, a WVGA medium-density screen is considered a large size screen. Although it offers the same resolution (the same number of pixels), the WVGA medium-density screen has a lower screen density, meaning that each pixel is physically larger and, thus, the entire screen is larger than the baseline (normal size) screen.
Density independence
Your application achieves "density independence" when it preserves the physical size (from the user's point of view) of user interface elements when displayed on screens with different densities.
Maintaining density independence is important because, without it, a UI element (such as a button) appears physically larger on a low density screen and smaller on a high density screen. Such density-related size changes can cause problems in your application layout and usability. Figures 2 and 3 show the difference between an application when it does not provide density independence and when it does, respectively.
Supporting Multiple Screens
Android runs on a variety of devices that offer different screen sizes and densities. For applications, the Android system provides a consistent development environment across devices and handles most of the work to adjust each application's user interface to the screen on which it is displayed. At the same time, the system provides APIs that allow you to control your application's UI for specific screen sizes and densities, in order to optimize your UI design for different screen configurations. For example, you might want a UI for tablets that's different from the UI for handsets.
Although the system performs scaling and resizing to make your application work on different screens, you should make the effort to optimize your application for different screen sizes and densities. In doing so, you maximize the user experience for all devices and your users believe that your application was actually designed for their devices—rather than simply stretched to fit the screen on their devices.
By following the practices described in this document, you can create an application that displays properly and provides an optimized user experience on all supported screen configurations, using a single .apk file.
Note: The information in this document assumes that your application is designed for Android 1.6 (API Level 4) or higher. If your application supports Android 1.5 or lower, please first read Strategies for Android 1.5.
Also, be aware that Android 3.2 has introduced new APIs that allow you to more precisely control the layout resources your application uses for different screen sizes. These new features are especially important if you're developing an application that's optimized for tablets. For details, see the section about Declaring Tablet Layouts for Android 3.2.
Overview of Screens Support
This section provides an overview of Android's support for multiple screens, including: an introduction to the terms and concepts used in this document and in the API, a summary of the screen configurations that the system supports, and an overview of the API and underlying screen-compatibility features.
Terms and concepts
Screen size
Actual physical size, measured as the screen's diagonal.
For simplicity, Android groups all actual screen sizes into four generalized sizes: small, normal, large, and extra large.
Screen density
The quantity of pixels within a physical area of the screen; usually referred to as dpi (dots per inch). For example, a "low" density screen has fewer pixels within a given physical area, compared to a "normal" or "high" density screen.
For simplicity, Android groups all actual screen densities into four generalized densities: low, medium, high, and extra high.
Orientation
The orientation of the screen from the user's point of view. This is either landscape or portrait, meaning that the screen's aspect ratio is either wide or tall, respectively. Be aware that not only do different devices operate in different orientations by default, but the orientation can change at runtime when the user rotates the device.
Resolution
The total number of physical pixels on a screen. When adding support for multiple screens, applications do not work directly with resolution; applications should be concerned only with screen size and density, as specified by the generalized size and density groups.
Density-independent pixel (dp)
A virtual pixel unit that you should use when defining UI layout, to express layout dimensions or position in a density-independent way.
The density-independent pixel is equivalent to one physical pixel on a 160 dpi screen, which is the baseline density assumed by the system for a "medium" density screen. At runtime, the system transparently handles any scaling of the dp units, as necessary, based on the actual density of the screen in use. The conversion of dp units to screen pixels is simple: px = dp * (dpi / 160). For example, on a 240 dpi screen, 1 dp equals 1.5 physical pixels. You should always use dp units when defining your application's UI, to ensure proper display of your UI on screens with different densities.
Range of screens supported
Starting with Android 1.6 (API Level 4), Android provides support for multiple screen sizes and densities, reflecting the many different screen configurations that a device may have. You can use features of the Android system to optimize your application's user interface for each screen configuration and ensure that your application not only renders properly, but provides the best user experience possible on each screen.
To simplify the way that you design your user interfaces for multiple screens, Android divides the range of actual screen sizes and densities into:
A set of four generalized sizes: small, normal, large, and xlarge
Note: Beginning with Android 3.2 (API level 13), these size groups are deprecated in favor of a new technique for managing screen sizes based on the available screen width. If you're developing for Android 3.2 and greater, see Declaring Tablet Layouts for Android 3.2 for more information.
A set of four generalized densities: ldpi (low), mdpi (medium), hdpi (high), and xhdpi (extra high)
The generalized sizes and densities are arranged around a baseline configuration that is a normal size and mdpi (medium) density. This baseline is based upon the screen configuration for the first Android-powered device, the T-Mobile G1, which has an HVGA screen (until Android 1.6, this was the only screen configuration that Android supported).
Each generalized size and density spans a range of actual screen sizes and densities. For example, two devices that both report a screen size of normal might have actual screen sizes and aspect ratios that are slightly different when measured by hand. Similarly, two devices that report a screen density of hdpi might have real pixel densities that are slightly different. Android makes these differences abstract to applications, so you can provide UI designed for the generalized sizes and densities and let the system handle any final adjustments as necessary. Figure 1 illustrates how different sizes and densities are roughly categorized into the different size and density groups.
Figure 1. Illustration of how Android roughly maps actual sizes and densities to generalized sizes and densities (figures are not exact).
As you design your UI for different screen sizes, you'll discover that each design requires a minimum amount of space. So, each generalized screen size above has an associated minimum resolution that's defined by the system. These minimum sizes are in "dp" units—the same units you should use when defining your layouts—which allows the system to avoid worrying about changes in screen density.
xlarge screens are at least 960dp x 720dp
large screens are at least 640dp x 480dp
normal screens are at least 470dp x 320dp
small screens are at least 426dp x 320dp
Note: These minimum screen sizes were not as well defined prior to Android 3.0, so you may encounter some devices that are mis-classified between normal and large. These are also based on the physical resolution of the screen, so may vary across devices—for example a 1024x720 tablet with a system bar actually has a bit less space available to the application due to it being used by the system bar.
To optimize your application's UI for the different screen sizes and densities, you can provide alternative resources for any of the generalized sizes and densities. Typically, you should provide alternative layouts for some of the different screen sizes and alternative bitmap images for different screen densities. At runtime, the system uses the appropriate resources for your application, based on the generalized size or density of the current device screen.
You do not need to provide alternative resources for every combination of screen size and density. The system provides robust compatibility features that can handle most of the work of rendering your application on any device screen, provided that you've implemented your UI using techniques that allow it to gracefully resize (as described in the Best Practices, below).
Note: The characteristics that define a device's generalized screen size and density are independent from each other. For example, a WVGA high-density screen is considered a normal size screen because its physical size is about the same as the T-Mobile G1 (Android's first device and baseline screen configuration). On the other hand, a WVGA medium-density screen is considered a large size screen. Although it offers the same resolution (the same number of pixels), the WVGA medium-density screen has a lower screen density, meaning that each pixel is physically larger and, thus, the entire screen is larger than the baseline (normal size) screen.
Density independence
Your application achieves "density independence" when it preserves the physical size (from the user's point of view) of user interface elements when displayed on screens with different densities.
Maintaining density independence is important because, without it, a UI element (such as a button) appears physically larger on a low density screen and smaller on a high density screen. Such density-related size changes can cause problems in your application layout and usability. Figures 2 and 3 show the difference between an application when it does not provide density independence and when it does, respectively.
Figure 2. Example application without support for different densities, as shown on low, medium, and high density screens.
Figure 3. Example application with good support for different densities (it's density independent), as shown on low, medium, and high density screens.
The Android system helps your application achieve density independence in two ways:
The system scales dp units as appropriate for the current screen density
The system scales drawable resources to the appropriate size, based on the current screen density, if necessary
In figure 2, the text view and bitmap drawable have dimensions specified in pixels (px units), so the views are physically larger on a low density screen and smaller on a high density screen. This is because although the actual screen sizes may be the same, the high density screen has more pixels per inch (the same amount of pixels fit in a smaller area). In figure 3, the layout dimensions are specified in density-independent pixels (dp units). Because the baseline for density-independent pixels is a medium-density screen, the device with a medium-density screen looks the same as it does in figure 2. For the low-density and high-density screens, however, the system scales the density-independent pixel values down and up, respectively, to fit the screen as appropriate.
In most cases, you can ensure density independence in your application simply by specifying all layout dimension values in density-independent pixels (dp units) or with "wrap_content", as appropriate. The system then scales bitmap drawables as appropriate in order to display at the appropriate size, based on the appropriate scaling factor for the current screen's density.
However, bitmap scaling can result in blurry or pixelated bitmaps, which you might notice in the above screenshots. To avoid these artifacts, you should provide alternative bitmap resources for different densities. For example, you should provide higher-resolution bitmaps for high-density screens and the system will use those instead of resizing the bitmap designed for medium-density screens. The following section describes more about how to supply alternative resources for different screen configurations.
How to Support Multiple Screens
The foundation of Android's support for multiple screens is its ability to manage the rendering of an application's layout and bitmap drawables in an appropriate way for the current screen configuration. The system handles most of the work to render your application properly on each screen configuration by scaling layouts to fit the screen size/density and scaling bitmap drawables for the screen density, as appropriate. To more gracefully handle different screen configurations, however, you should also:
Explicitly declare in the manifest which screen sizes your application supports
By declaring which screen sizes your application supports, you can ensure that only devices with the screens you support can download your application. Declaring support for different screen sizes can also affect how the system draws your application on larger screens—specifically, whether your application runs in screen compatibility mode.
To declare the screen sizes your application supports, you should include the <supports-screens> element in your manifest file.
Provide different layouts for different screen sizes
By default, Android resizes your application layout to fit the current device screen. In most cases, this works fine. In other cases, your UI might not look as good and might need adjustments for different screen sizes. For example, on a larger screen, you might want to adjust the position and size of some elements to take advantage of the additional screen space, or on a smaller screen, you might need to adjust sizes so that everything can fit on the screen.
The configuration qualifiers you can use to provide size-specific resources are small, normal, large, and xlarge. For example, layouts for an extra large screen should go in layout-xlarge/.
Beginning with Android 3.2 (API level 13), the above size groups are deprecated and you should instead use the sw<N>dp configuration qualifier to define the smallest available width required by your layout resources. For example, if your multi-pane tablet layout requires at least 600dp of screen width, you should place it in layout-sw600dp/. Using the new techniques for declaring layout resources is discussed further in the section about Declaring Tablet Layouts for Android 3.2.
Provide different bitmap drawables for different screen densities
By default, Android scales your bitmap drawables (.png, .jpg, and .gif files) and Nine-Patch drawables (.9.png files) so that they render at the appropriate physical size on each device. For example, if your application provides bitmap drawables only for the baseline, medium screen density (mdpi), then the system scales them up when on a high-density screen, and scales them down when on a low-density screen. This scaling can cause artifacts in the bitmaps. To ensure your bitmaps look their best, you should include alternative versions at different resolutions for different screen densities.
The configuration qualifiers you can use for density-specific resources are ldpi (low), mdpi (medium), hdpi (high), and xhdpi (extra high). For example, bitmaps for high-density screens should go in drawable-hdpi/.
The size and density configuration qualifiers correspond to the generalized sizes and densities described in Range of screens supported, above.
Note: If you're not familiar with configuration qualifiers and how the system uses them to apply alternative resources, read Providing Alternative Resources for more information.
At runtime, the system ensures the best possible display on the current screen with the following procedure for any given resource:
The system uses the appropriate alternative resource
Based on the size and density of the current screen, the system uses any size- and density-specific resource provided in your application. For example, if the device has a high-density screen and the application requests a drawable resource, the system looks for a drawable resource directory that best matches the device configuration. Depending on the other alternative resources available, a resource directory with the hdpi qualifier (such as drawable-hdpi/) might be the best match, so the system uses the drawable resource from this directory.
If no matching resource is available, the system uses the default resource and scales it up or down as needed to match the current screen size and density
The "default" resources are those that are not tagged with a configuration qualifier. For example, the resources in drawable/ are the default drawable resources. The system assumes that default resources are designed for the baseline screen size and density, which is a normal screen size and a medium density. As such, the system scales default density resources up for high-density screens and down for low-density screens, as appropriate.
However, when the system is looking for a density-specific resource and does not find it in the density-specific directory, it won't always use the default resources. The system may instead use one of the other density-specific resources in order to provide better results when scaling. For example, when looking for a low-density resource and it is not available, the system prefers to scale-down the high-density version of the resource, because the system can easily scale a high-density resource down to low-density by a factor of 0.5, with fewer artifacts, compared to scaling a medium-density resource by a factor of 0.75.
For more information about how Android selects alternative resources by matching configuration qualifiers to the device configuration, read How Android Finds the Best-matching Resource.
Using configuration qualifiers
Android supports several configuration qualifiers that allow you to control how the system selects your alternative resources based on the characteristics of the current device screen. A configuration qualifier is a string that you can append to a resource directory in your Android project and specifies the configuration for which the resources inside are designed.
To use a configuration qualifier:
Create a new directory in your project's res/ directory and name it using the format: <resources_name>-<qualifier>
<resources_name> is the standard resource name (such as drawable or layout).
<qualifier> is a configuration qualifier from table 1, below, specifying the screen configuration for which these resources are to be used (such as hdpi or xlarge).
You can use more than one <qualifier> at a time—simply separate each qualifier with a dash.
Save the appropriate configuration-specific resources in this new directory. The resource files must be named exactly the same as the default resource files.
For example, xlarge is a configuration qualifier for extra large screens. When you append this string to a resource directory name (such as layout-xlarge), it indicates to the system that these resources are to be used on devices that have an extra large screen.
Table 1. Configuration qualifiers that allow you to provide special resources for different screen configurations.Screen characteristic Qualifier Description
Size small Resources for small size screens.
normal Resources for normal size screens. (This is the baseline size.)
large Resources for large size screens.
xlarge Resources for extra large size screens.
Density ldpi Resources for low-density (ldpi) screens (~120dpi).
mdpi Resources for medium-density (mdpi) screens (~160dpi). (This is the baseline density.)
hdpi Resources for high-density (hdpi) screens (~240dpi).
xhdpi Resources for extra high-density (xhdpi) screens (~320dpi).
nodpi Resources for all densities. These are density-independent resources. The system does not scale resources tagged with this qualifier, regardless of the current screen's density.
tvdpi Resources for screens somewhere between mdpi and hdpi; approximately 213dpi. This is not considered a "primary" density group. It is mostly intended for televisions and most apps shouldn't need it—providing mdpi and hdpi resources is sufficient for most apps and the system will scale them as appropriate. If you find it necessary to provide tvdpi resources, you should size them at a factor of 1.33*mdpi. For example, a 100px x 100px image for mdpi screens should be 133px x 133px for tvdpi.
Orientation land Resources for screens in the landscape orientation (wide aspect ratio).
port Resources for screens in the portrait orientation (tall aspect ratio).
Aspect ratio long Resources for screens that have a significantly taller or wider aspect ratio (when in portrait or landscape orientation, respectively) than the baseline screen configuration.
notlong Resources for use screens that have an aspect ratio that is similar to the baseline screen configuration.
Note: If you're developing your application for Android 3.2 and higher, see the section about Declaring Tablet Layouts for Android 3.2 for information about new configuration qualifiers that you should use when declaring layout resources for specific screen sizes (instead of using the size qualifiers in table 1).
For more information about how these qualifiers roughly correspond to real screen sizes and densities, see Range of Screens Supported, earlier in this document.
For example, the following is a list of resource directories in an application that provides different layout designs for different screen sizes and different bitmap drawables for medium, high, and extra high density screens.
res/layout/my_layout.xml // layout for normal screen size ("default")
res/layout-small/my_layout.xml // layout for small screen size
res/layout-large/my_layout.xml // layout for large screen size
res/layout-xlarge/my_layout.xml // layout for extra large screen size
res/layout-xlarge-land/my_layout.xml // layout for extra large in landscape orientation
res/drawable-mdpi/my_icon.png // bitmap for medium density
res/drawable-hdpi/my_icon.png // bitmap for high density
res/drawable-xhdpi/my_icon.png // bitmap for extra high density
For more information about how to use alternative resources and a complete list of configuration qualifiers (not just for screen configurations), see Providing Alternative Resources.
Be aware that, when the Android system picks which resources to use at runtime, it uses certain logic to determing the "best matching" resources. That is, the qualifiers you use don't have to exactly match the current screen configuration in all cases in order for the system to use them. Specifically, when selecting resources based on the size qualifiers, the system will use resources designed for a screen smaller than the current screen if there are no resources that better match (for example, a large-size screen will use normal-size screen resources if necessary). However, if the only available resources are larger than the current screen, the system will not use them and your application will crash if no other resources match the device configuration (for example, if all layout resources are tagged with the xlarge qualifier, but the device is a normal-size screen). For more information about how the system selects resources, read How Android Finds the Best-matching Resource.
Tip: If you have some drawable resources that the system should never scale (perhaps because you perform some adjustments to the image yourself at runtime), you should place them in a directory with the nodpi configuration qualifier. Resources with this qualifier are considered density-agnostic and the system will not scale them.
Designing alternative layouts and drawables
The types of alternative resources you should create depends on your application's needs. Usually, you should use the size and orientation qualifiers to provide alternative layout resources and use the density qualifiers to provide alternative bitmap drawable resources.
The following sections summarize how you might want to use the size and density qualifiers to provide alternative layouts and drawables, respectively.
Alternative layouts
Generally, you'll know whether you need alternative layouts for different screen sizes once you test your application on different screen configurations. For example:
When testing on a small screen, you might discover that your layout doesn't quite fit on the screen. For example, a row of buttons might not fit within the width of the screen on a small screen device. In this case you should provide an alternative layout for small screens that adjusts the size or position of the buttons.
When testing on an extra large screen, you might realize that your layout doesn't make efficient use of the big screen and is obviously stretched to fill it. In this case, you should provide an alternative layout for extra large screens that provides a redesigned UI that is optimized for bigger screens such as tablets.
Although your application should work fine without an alternative layout on big screens, it's quite important to users that your application looks as though it's designed specifically for their devices. If the UI is obviously stretched, users are more likely to be unsatisfied with the application experience.
And, when testing in the landscape orientation compared to the portrait orientation, you might notice that UI elements placed at the bottom of the screen for the portrait orientation should instead be on the right side of the screen in landscape orientation.
To summarize, you should be sure that your application layout:
Fits on small screens (so users can actually use your application)
Is optimized for bigger screens to take advantage of the additional screen space
Is optimized for both landscape and portrait orientations
If your UI uses bitmaps that need to fit the size of a view even after the system scales the layout (such as the background image for a button), you should use Nine-Patch bitmap files. A Nine-Patch file is basically a PNG file in which you specific two-dimensional regions that are stretchable. When the system needs to scale the view in which the bitmap is used, the system stretches the Nine-Patch bitmap, but stretches only the specified regions. As such, you don't need to provide different drawables for different screen sizes, because the Nine-Patch bitmap can adjust to any size. You should, however, provide alternate versions of your Nine-Patch files for different screen densities.
Alternative drawables
Almost every application should have alternative drawable resources for different screen densities, because almost every application has a launcher icon and that icon should look good on all screen densities. Likewise, if you include other bitmap drawables in your application (such as for menu icons or other graphics in your application), you should provide alternative versions or each one, for different densities.
Note: You only need to provide density-specific drawables for bitmap files (.png, .jpg, or .gif) and Nine-Path files (.9.png). If you use XML files to define shapes, colors, or other drawable resources, you should put one copy in the default drawable directory (drawable/).
To create alternative bitmap drawables for different densities, you should follow the 3:4:6:8 scaling ratio between the four generalized densities. For example, if you have a bitmap drawable that's 48x48 pixels for medium-density screen (the size for a launcher icon), all the different sizes should be:
36x36 for low-density
48x48 for medium-density
72x72 for high-density
96x96 for extra high-density
For more information about designing icons, see the Icon Design Guidelines, which includes size information for various bitmap drawables, such as launcher icons, menu icons, status bar icons, tab icons, and more.
Declaring Tablet Layouts for Android 3.2
For the first generation of tablets running Android 3.0, the proper way to declare tablet layouts was to put them in a directory with the xlarge configuration qualifier (for example, res/layout-xlarge/). In order to accommodate other types of tablets and screen sizes—in particular, 7" tablets—Android 3.2 introduces a new way to specify resources for more discrete screen sizes. The new technique is based on the amount of space your layout needs (such as 600dp of width), rather than trying to make your layout fit the generalized size groups (such as large or xlarge).
The reason designing for 7" tablets is tricky when using the generalized size groups is that a 7" tablet is technically in the same group as a 5" handset (the large group). While these two devices are seemingly close to each other in size, the amount of space for an application's UI is significantly different, as is the style of user interaction. Thus, a 7" and 5" screen should not always use the same layout. To make it possible for you to provide different layouts for these two kinds of screens, Android now allows you to specify your layout resources based on the width and/or height that's actually available for your application's layout, specified in dp units.
For example, after you've designed the layout you want to use for tablet-style devices, you might determine that the layout stops working well when the screen is less than 600dp wide. This threshold thus becomes the minimum size that you require for your tablet layout. As such, you can now specify that these layout resources should be used only when there is at least 600dp of width available for your application's UI.
You should either pick a width and design to it as your minimum size, or test what is the smallest width your layout supports once it's complete.
Note: Remember that all the figures used with these new size APIs are density-indpendent pixel (dp) values and your layout dimensions should also always be defined using dp units, because what you care about is the amount of screen space available after the system accounts for screen density (as opposed to using raw pixel resolution). For more information about density-indpendent pixels, read Terms and concepts, earlier in this document.
Using new size qualifiers
The different resource configurations that you can specify based on the space available for your layout are summarized in table 2. These new qualifiers offer you more control over the specific screen sizes your application supports, compared to the traditional screen size groups (small, normal, large, and xlarge).
Note: The sizes that you specify using these qualifiers are not the actual screen sizes. Rather, the sizes are for the width or height in dp units that are available to your activity's window. The Android system might use some of the screen for system UI (such as the system bar at the bottom of the screen or the status bar at the top), so some of the screen might not be available for your layout. Thus, the sizes you declare should be specifically about the sizes needed by your activity—the system accounts for any space used by system UI when declaring how much space it provides for your layout. Also beware that the Action Bar is considered a part of your application's window space, although your layout does not declare it, so it reduces the space available for your layout and you must account for it in your design.
Table 2. New configuration qualifers for screen size (introduced in Android 3.2).Screen configuration Qualifier values Description
smallestWidth sw<N>dp
Examples:
sw600dp
sw720dp
The fundamental size of a screen, as indicated by the shortest dimension of the available screen area. Specifically, the device's smallestWidth is the shortest of the screen's available height and width (you may also think of it as the "smallest possible width" for the screen). You can use this qualifier to ensure that, regardless of the screen's current orientation, your application's has at least <N> dps of width available for it UI.
For example, if your layout requires that its smallest dimension of screen area be at least 600 dp at all times, then you can use this qualifer to create the layout resources, res/layout-sw600dp/. The system will use these resources only when the smallest dimension of available screen is at least 600dp, regardless of whether the 600dp side is the user-perceived height or width. The smallestWidth is a fixed screen size characteristic of the device; the device's smallestWidth does not change when the screen's orientation changes.
The smallestWidth of a device takes into account screen decorations and system UI. For example, if the device has some persistent UI elements on the screen that account for space along the axis of the smallestWidth, the system declares the smallestWidth to be smaller than the actual screen size, because those are screen pixels not available for your UI.
This is an alternative to the generalized screen size qualifiers (small, normal, large, xlarge) that allows you to define a discrete number for the effective size available for your UI. Using smallestWidth to determine the general screen size is useful because width is often the driving factor in designing a layout. A UI will often scroll vertically, but have fairly hard constraints on the minimum space it needs horizontally. The available width is also the key factor in determining whether to use a one-pane layout for handsets or multi-pane layout for tablets. Thus, you likely care most about what the smallest possible width will be on each device.
Available screen width w<N>dp
Examples:
w720dp
w1024dp
Specifies a minimum available width in dp units at which the resources should be used—defined by the <N> value. The system's corresponding value for the width changes when the screen's orientation switches between landscape and portrait to reflect the current actual width that's available for your UI.
This is often useful to determine whether to use a multi-pane layout, because even on a tablet device, you often won't want the same multi-pane layout for portrait orientation as you do for landscape. Thus, you can use this to specify the minimum width required for the layout, instead of using both the screen size and orientation qualifiers together.
Available screen height h<N>dp
Examples:
h720dp
h1024dp
etc.
Specifies a minimum screen height in dp units at which the resources should be used—defined by the <N> value. The system's corresponding value for the height changes when the screen's orientation switches between landscape and portrait to reflect the current actual height that's available for your UI.
Using this to define the height required by your layout is useful in the same way as w<N>dp is for defining the required width, instead of using both the screen size and orientation qualifiers. However, most apps won't need this qualifier, considering that UIs often scroll vertically and are thus more flexible with how much height is available, whereas the width is more rigid.
While using these qualifiers might seem more complicated than using screen size groups, it should actually be simpler once you determine the requirements for your UI. When you design your UI, the main thing you probably care about is the actual size at which your application switches between a handset-style UI and a tablet-style UI that uses multiple panes. The exact point of this switch will depend on your particular design—maybe you need a 720dp width for your tablet layout, maybe 600dp is enough, or 480dp, or some number between these. Using these qualifiers in table 2, you are in control of the precise size at which your layout changes.
For more discussion about these size configuration qualifiers, see the Providing Resources document.
Configuration examples
To help you target some of your designs for different types of devices, here are some numbers for typical screen widths:
320dp: a typical phone screen (240x320 ldpi, 320x480 mdpi, 480x800 hdpi, etc).
480dp: a tweener tablet like the Streak (480x800 mdpi).
600dp: a 7” tablet (600x1024 mdpi).
720dp: a 10” tablet (720x1280 mdpi, 800x1280 mdpi, etc).
Using the size qualifiers from table 2, your application can switch between your different layout resources for handsets and tablets using any number you want for width and/or height. For example, if 600dp is the smallest available width supported by your tablet layout, you can provide these two sets of layouts:
res/layout/main_activity.xml # For handsets
res/layout-sw600dp/main_activity.xml # For tablets
In this case, the smallest width of the available screen space must be 600dp in order for the tablet layout to be applied.
For other cases in which you want to further customize your UI to differentiate between sizes such as 7” and 10” tablets, you can define additional smallest width layouts:
res/layout/main_activity.xml # For handsets (smaller than 600dp available width)
res/layout-sw600dp/main_activity.xml # For 7” tablets (600dp wide and bigger)
res/layout-sw720dp/main_activity.xml # For 10” tablets (720dp wide and bigger)
Notice that the previous two sets of example resources use the "smallest width" qualifer, sw<N>dp, which specifies the smallest of the screen's two sides, regardless of the device's current orientation. Thus, using sw<N>dp is a simple way to specify the overall screen size available for your layout by ignoring the screen's orientation.
However, in some cases, what might be important for your layout is exactly how much width or height is currently available. For example, if you have a two-pane layout with two fragments side by side, you might want to use it whenever the screen provides at least 600dp of width, whether the device is in landscape or portrait orientation. In this case, your resources might look like this:
res/layout/main_activity.xml # For handsets (smaller than 600dp available width)
res/layout-w600dp/main_activity.xml # Multi-pane (any screen with 600dp available width or more)
Notice that the second set is using the "available width" qualifier, w<N>dp. This way, one device may actually use both layouts, depending on the orientation of the screen (if the available width is at least 600dp in one orientation and less than 600dp in the other orientation).
If the available height is a concern for you, then you can do the same using the h<N>dp qualifier. Or, even combine the w<N>dp and h<N>dp qualifiers if you need to be really specific.
Declaring screen size support
Once you've implemented your layouts for different screen sizes, it's equally important that you declare in your manifest file which screens your application supports.
Along with the new configuration qualifiers for screen size, Android 3.2 introduces new attributes for the <supports-screens> manifest element:
android:requiresSmallestWidthDp
Specifies the minimum smallestWidth required. The smallestWidth is the shortest dimension of the screen space (in dp units) that must be available to your application UI—that is, the shortest of the available screen's two dimensions. So, in order for a device to be considered compatible with your application, the device's smallestWidth must be equal to or greater than this value. (Usually, the value you supply for this is the "smallest width" that your layout supports, regardless of the screen's current orientation.)
For example, if your application is only for tablet-style devices with a 600dp smallest available width:
<manifest ... >
<supports-screens android:requiresSmallestWidthDp="600" />
...
</manifest>
However, if your application supports all screen sizes supported by Android (as small as 426dp x 320dp), then you don't need to declare this attribute, because the smallest width your application requires is the smallest possible on any device.
Caution: The Android system does not pay attention to this attribute, so it does not affect how your application behaves at runtime. Instead, it is used to enable filtering for your application on services such as Android Market. However, Android Market currently does not support this attribute for filtering (on Android 3.2), so you should continue using the other size attributes if your application does not support small screens.
android:compatibleWidthLimitDp
This attribute allows you to enable screen compatibility mode as a user-optional feature by specifying the maximum "smallest width" that your application supports. If the smallest side of a device's available screen is greater than your value here, users can still install your application, but are offered to run it in screen compatibility mode. By default, screen compatibility mode is disabled and your layout is resized to fit the screen as usual, but a button is available in the system bar that allows users to toggle screen compatibility mode on and off.
Note: If your application's layout properly resizes for large screens, you do not need to use this attribute. We recommend that you avoid using this attribute and instead ensure your layout resizes for larger screens by following the recommendations in this document.
android:largestWidthLimitDp
This attribute allows you to force-enable screen compatibility mode by specifying the maximum "smallest width" that your application supports. If the smallest side of a device's available screen is greater than your value here, the application runs in screen compatibility mode with no way for the user to disable it.
Note: If your application's layout properly resizes for large screens, you do not need to use this attribute. We recommend that you avoid using this attribute and instead ensure your layout resizes for larger screens by following the recommendations in this document.
Caution: When developing for Android 3.2 and higher, you should not use the older screen size attributes in combination with the attributes listed above. Using both the new attributes and the older size attributes might cause unexpected behavior.
For more information about each of these attributes, follow the respective links above.
Best Practices
The objective of supporting multiple screens is to create an application that can function properly and look good on any of the generalized screen configurations supported by Android. The previous sections of this document provide information about how Android adapts your application to screen configurations and how you can customize the look of your application on different screen configurations. This section provides some additional tips and an overview of techniques that help ensure that your application scales properly for different screen configurations.
Here is a quick checklist about how you can ensure that your application displays properly on different screens:
Use wrap_content, fill_parent, or dp units when specifying dimensions in an XML layout file
Do not use hard coded pixel values in your application code
Do not use AbsoluteLayout (it's deprecated)
Supply alternative bitmap drawables for different screen densities
The following sections provide more details.
1. Use wrap_content, fill_parent, or the dp unit for layout dimensions
When defining the android:layout_width and android:layout_height for views in an XML layout file, using "wrap_content", "fill_parent" or dp units guarantees that the view is given an appropriate size on the current device screen.
For instance, a view with a layout_width="100dp" measures 100 pixels wide on medium-density screen and the system scales it up to 150 pixels wide on high-density screen, so that the view occupies approximately the same physical space on the screen.
Similarly, you should prefer the sp (scale-independent pixel) to define text sizes. The sp scale factor depends on a user setting and the system scales the size the same as it does for dp.
2. Do not use hard-coded pixel values in your application code
For performance reasons and to keep the code simpler, the Android system uses pixels as the standard unit for expressing dimension or coordinate values. That means that the dimensions of a view are always expressed in the code using pixels, but always based on the current screen density. For instance, if myView.getWidth() returns 10, the view is 10 pixels wide on the current screen, but on a device with a higher density screen, the value returned might be 15. If you use pixel values in your application code to work with bitmaps that are not pre-scaled for the current screen density, you might need to scale the pixel values that you use in your code to match the un-scaled bitmap source.
If your application manipulates bitmaps or deals with pixel values at runtime, see the section below about Additional Density Considerations.
3. Do not use AbsoluteLayout
Unlike the other layouts widgets, AbsoluteLayout enforces the use of fixed positions to lay out its child views, which can easily lead to user interfaces that do not work well on different displays. Because of this, AbsoluteLayout was deprecated in Android 1.5 (API Level 3).
You should instead use RelativeLayout, which uses relative positioning to lay out its child views. For instance, you can specify that a button widget should appear "to the right of" a text widget.
4. Use size and density-specific resources
Although the system scales your layout and drawable resources based on the current screen configuration, you may want to make adjustments to the UI on different screen sizes and provide bitmap drawables that are optimized for different densities. This essentially reiterates the information from earlier in this document.
If you need to control exactly how your application will look on various screen configurations, adjust your layouts and bitmap drawables in configuration-specific resource directories. For example, consider an icon that you want to display on medium and high density screens. Simply create your icon at two different sizes (for instance 100x100 for medium density and 150x150 for high density) and put the two variations in the appropriate directories, using the proper qualifiers:
res/drawable-mdpi/icon.png //for medium-density screens
res/drawable-hdpi/icon.png //for high-density screens
Note: If a density qualifier is not defined in a directory name, the system assumes that the resources in that directory are designed for the baseline medium density and will scale for other densities as appropriate.
For more information about valid configuration qualifiers, see Using configuration qualifiers, earlier in this document.
Additional Density Considerations
This section describes more about how Android performs scaling for bitmap drawables on different screen densities and how you can further control how bitmaps are drawn on different densities. The information in this section shouldn't be important to most applications, unless you have encountered problems in your application when running on different screen densities or your application manipulates graphics.
To better understand how you can support multiple densities when manipulating graphics at runtime, you should understand that the system helps ensure the proper scale for bitmaps in the following ways:
Pre-scaling of resources (such as bitmap drawables)
Based on the density of the current screen, the system uses any size- or density-specific resources from your application and displays them without scaling. If resources are not available in the correct density, the system loads the default resources and scales them up or down as needed to match the current screen's density. The system assumes that default resources (those from a directory without configuration qualifiers) are designed for the baseline screen density (mdpi), unless they are loaded from a density-specific resource directory. Pre-scaling is, thus, what the system does when resizing a bitmap to the appropriate size for the current screen density.
If you request the dimensions of a pre-scaled resource, the system returns values representing the dimensions after scaling. For example, a bitmap designed at 50x50 pixels for an mdpi screen is scaled to 75x75 pixels on an hdpi screen (if there is no alternative resource for hdpi) and the system reports the size as such.
There are some situations in which you might not want Android to pre-scale a resource. The easiest way to avoid pre-scaling is to put the resource in a resource directory with the nodpi configuration qualifier. For example:
res/drawable-nodpi/icon.png
When the system uses the icon.png bitmap from this folder, it does not scale it based on the current device density.
Auto-scaling of pixel dimensions and coordinates
An application can disable pre-scaling by setting android:anyDensity to "false" in the manifest or programmatically for a Bitmap by setting inScaled to "false". In this case, the system auto-scales any absolute pixel coordinates and pixel dimension values at draw time. It does this to ensure that pixel-defined screen elements are still displayed at approximately the same physical size as they would be at the baseline screen density (mdpi). The system handles this scaling transparently to the application and reports the scaled pixel dimensions to the application, rather than physical pixel dimensions.
For instance, suppose a device has a WVGA high-density screen, which is 480x800 and about the same size as a traditional HVGA screen, but it's running an application that has disabled pre-scaling. In this case, the system will "lie" to the application when it queries for screen dimensions, and report 320x533 (the approximate mdpi translation for the screen density). Then, when the application does drawing operations, such as invalidating the rectangle from (10,10) to (100, 100), the system transforms the coordinates by scaling them the appropriate amount, and actually invalidate the region (15,15) to (150, 150). This discrepancy may cause unexpected behavior if your application directly manipulates the scaled bitmap, but this is considered a reasonable trade-off to keep the performance of applications as good as possible. If you encounter this situation, read the following section about Converting dp units to pixel units.
Usually, you should not disable pre-scaling. The best way to support multiple screens is to follow the basic techniques described above in How to Support Multiple Screens.
If your application manipulates bitmaps or directly interacts with pixels on the screen in some other way, you might need to take additional steps to support different screen densities. For example, if you respond to touch gestures by counting the number of pixels that a finger crosses, you need to use the appropriate density-independent pixel values, instead of actual pixels.
Scaling Bitmap objects created at runtime
If your application creates an in-memory bitmap (a Bitmap object), the system assumes that the bitmap is designed for the baseline medium-density screen, by default, and auto-scales the bitmap at draw time. The system applies "auto-scaling" to a Bitmap when the bitmap has unspecified density properties. If you don't properly account for the current device's screen density and specify the bitmap's density properties, the auto-scaling can result in scaling artifacts the same as when you don't provide alternative resources.
To control whether a Bitmap created at runtime is scaled or not, you can specify the density of the bitmap with setDensity(), passing a density constant from DisplayMetrics, such as DENSITY_HIGH or DENSITY_LOW.
If you're creating a Bitmap using BitmapFactory, such as from a file or a stream, you can use BitmapFactory.Options to define properties of the bitmap as it already exists, which determine if or how the system will scale it. For example, you can use the inDensity field to define the density for which the bitmap is designed and the inScaled field to specify whether the bitmap should scale to match the current device's screen density.
If you set the inScaled field to false, then you disable any pre-scaling that the system may apply to the bitmap and the system will then auto-scale it at draw time. Using auto-scaling instead of pre-scaling can be more CPU expensive, but uses less memory.
Figure 5 demonstrates the results of the pre-scale and auto-scale mechanisms when loading low (120), medium (160) and high (240) density bitmaps on a high-density screen. The differences are subtle, because all of the bitmaps are being scaled to match the current screen density, however the scaled bitmaps have slightly different appearances depending on whether they are pre-scaled or auto-scaled at draw time. You can find the source code for this sample application, which demonstrates using pre-scaled and auto-scaled bitmaps, in ApiDemos.
Note: In Android 3.0 and above, there should be no perceivable difference between pre-scaled and auto-scaled bitmaps, due to improvements in the graphics framework.
Converting dp units to pixel units
In some cases, you will need to express dimensions in dp and then convert them to pixels. Imagine an application in which a scroll or fling gesture is recognized after the user's finger has moved by at least 16 pixels. On a baseline screen, a user's must move by 16 pixels / 160 dpi, which equals 1/10th of an inch (or 2.5 mm) before the gesture is recognized. On a device with a high density display (240dpi), the user's must move by 16 pixels / 240 dpi, which equals 1/15th of an inch (or 1.7 mm). The distance is much shorter and the application thus appears more sensitive to the user.
To fix this issue, the gesture threshold must be expressed in code in dp and then converted to actual pixels. For example:
// The gesture threshold expressed in dp
private static final float GESTURE_THRESHOLD_DP = 16.0f;
// Get the screen's density scale
final float scale = getResources().getDisplayMetrics().density;
// Convert the dps to pixels, based on density scale
mGestureThreshold = (int) (GESTURE_THRESHOLD_DP * scale + 0.5f);
// Use mGestureThreshold as a distance in pixels...
The DisplayMetrics.density field specifies the scale factor you must use to convert dp units to pixels, according to the current screen density. On a medium-density screen, DisplayMetrics.density equals 1.0; on a high-density screen it equals 1.5; on an extra high-density screen, it equals 2.0; and on a low-density screen, it equals 0.75. This figure is the factor by which you should multiply the dp units on order to get the actual pixel count for the current screen. (Then add 0.5f to round the figure up to the nearest whole number, when converting to an integer.) For more information, refer to the DisplayMetrics class.
However, instead of defining an arbitrary threshold for this kind of event, you should use pre-scaled configuration values that are available from ViewConfiguration.
Using pre-scaled configuration values
You can use the ViewConfiguration class to access common distances, speeds, and times used by the Android system. For instance, the distance in pixels used by the framework as the scroll threshold can be obtained with getScaledTouchSlop():
private static final int GESTURE_THRESHOLD_DP = ViewConfiguration.get(myContext).getScaledTouchSlop();
Methods in ViewConfiguration starting with the getScaled prefix are guaranteed to return a value in pixels that will display properly regardless of the current screen density.
How to Test Your Application on Multiple Screens
Before publishing your application, you should thoroughly test it in all of the supported screen sizes and densities. The Android SDK includes emulator skins you can use, which replicate the sizes and densities of common screen configurations on which your application is likely to run. You can also modify the default size, density, and resolution of the emulator skins to replicate the characteristics of any specific screen. Using the emulator skins and additional custom configurations allows you to test any possible screen configuration, so you don't have to buy various devices just to test your application's screen support.
To set up an environment for testing your application's screen support, you should create a series of AVDs (Android Virtual Devices), using emulator skins and screen configurations that emulate the screen sizes and densities you want your application to support. To do so, you can use the Android SDK and AVD Manager to create the AVDs and launch them with a graphical interface.
To launch the Android SDK and AVD Manager, execute the SDK Manager.exe from your Android SDK directory (on Windows only) or execute android from the <sdk>/tools/ directory (on all platforms). Figure 6 shows the Android SDK and AVD Manager with a selection of AVDs, for testing various screen configurations.
Table 3 shows the various emulator skins that are available in the Android SDK, which you can use to emulate some of the most common screen configurations.
For more information about creating and using AVDs to test your application, see Managing AVDs with AVD Manager.
Various screen configurations available from emulator skins in the Android SDK (indicated in bold) and other representative resolutions. Low density (120), ldpi Medium density (160), mdpi High density (240), hdpi Extra high density (320), xhdpi
Small screen QVGA (240x320) 480x640
Normal screen WQVGA400 (240x400)
WQVGA432 (240x432) HVGA (320x480) WVGA800 (480x800)
WVGA854 (480x854)
600x1024 640x960
Large screen WVGA800** (480x800)
WVGA854** (480x854) WVGA800* (480x800)
WVGA854* (480x854)
600x1024
Extra Large screen 1024x600 WXGA (1280x800)†
1024x768
1280x768 1536x1152
1920x1152
1920x1200 2048x1536
2560x1536
2560x1600
* To emulate this configuration, specify a custom density of 160 when creating an AVD that uses a WVGA800 or WVGA854 skin.
** To emulate this configuration, specify a custom density of 120 when creating an AVD that uses a WVGA800 or WVGA854 skin.
† This skin is available with the Android 3.0 platform
To see the relative numbers of active devices that support any given screen configuration, see the Screen Sizes and Densities dashboard
We also recommend that you test your application in an emulator that is set up to run at a physical size that closely matches an actual device. This makes it a lot easier to compare the results at various sizes and densities. To do so you need to know the approximate density, in dpi, of your computer monitor (for instance, a 30" Dell monitor has a density of about 96 dpi). When you launch an AVD from the Android SDK and AVD Manager, you can specify the screen size for the emulator and your monitor dpi in the Launch Options, as shown in figure 7.
If you would like to test your application on a screen that uses a resolution or density not supported by the built-in skins, you can create an AVD that uses a custom resolution or density. When creating the AVD from the Android SDK and AVD Manager, specify the Resolution, instead of selecting a Built-in Skin.
If you are launching your AVD from the command line, you can specify the scale for the emulator with the -scale option. For example:
emulator -avd <avd_name> -scale 96dpi
To refine the size of the emulator, you can instead pass the -scale option a number between 0.1 and 3 that represents the desired scaling factor.
Using Hardware Devices
When building a mobile application, it's important that you always test your application on a real device before releasing it to users. This page describes how to set up your development environment and Android-powered device for testing and debugging on the device.
You can use any Android-powered device as an environment for running, debugging, and testing your applications. The tools included in the SDK make it easy to install and run your application on the device each time you compile. You can install your application on the device directly from Eclipse or from the command line with ADB. If you don't yet have a device, check with the service providers in your area to determine which Android-powered devices are available.
If you want a SIM-unlocked phone, then you might consider the Google Nexus S. To find a place to purchase the Nexus S and other Android-powered devices, visit google.com/phone.
Note: When developing on a device, keep in mind that you should still use the Android emulator to test your application on configurations that are not equivalent to those of your real device. Although the emulator does not allow you to test every device feature (such as the accelerometer), it does allow you to verify that your application functions properly on different versions of the Android platform, in different screen sizes and orientations, and more.
Setting up a Device for Development
With an Android-powered device, you can develop and debug your Android applications just as you would on the emulator. Before you can start, there are just a few things to do:
Declare your application as "debuggable" in your Android Manifest.
In Eclipse, you can do this from the Application tab when viewing the Manifest (on the right side, set Debuggable to true). Otherwise, in the AndroidManifest.xml file, add android:debuggable="true" to the <application> element.
Set up your device to allow installation of non-Market applications.
On the device, go to Settings > Applications and enable Unknown sources (on an Android 4.0 device, the setting is located in Settings > Security).
Turn on "USB Debugging" on your device.
On the device, go to Settings > Applications > Development and enable USB debugging (on an Android 4.0 device, the setting is located in Settings > Developer options).
Set up your system to detect your device.
If you're developing on Windows, you need to install a USB driver for adb. If you're using an Android Developer Phone (ADP), Nexus One, or Nexus S, see the Google Windows USB Driver. Otherwise, you can find a link to the appropriate OEM driver in the OEM USB Drivers document.
If you're developing on Mac OS X, it just works. Skip this step.
If you're developing on Ubuntu Linux, you need to add a udev rules file that contains a USB configuration for each type of device you want to use for development. In the rules file, each device manufacturer is identified by a unique vendor ID, as specified by the ATTR{idVendor} property. For a list of vendor IDs, see USB Vendor IDs, below. To set up device detection on Ubuntu Linux:
Log in as root and create this file: /etc/udev/rules.d/51-android.rules.
Use this format to add each vendor to the file:
SUBSYSTEM=="usb", ATTR{idVendor}=="0bb4", MODE="0666", GROUP="plugdev"
In this example, the vendor ID is for HTC. The MODE assignment specifies read/write permissions, and GROUP defines which Unix group owns the device node.
Note: The rule syntax may vary slightly depending on your environment. Consult the udev documentation for your system as needed. For an overview of rule syntax, see this guide to writing udev rules.
Now execute:
chmod a+r /etc/udev/rules.d/51-android.rules
You can verify that your device is connected by executing adb devices from your SDK platform-tools/ directory. If connected, you'll see the device name listed as a "device."
If using Eclipse, run or debug your application as usual. You will be presented with a Device Chooser dialog that lists the available emulator(s) and connected device(s). Select the device upon which you want to install and run the application.
If using the Android Debug Bridge (adb), you can issue commands with the -d flag to target your connected device.
USB Vendor IDs
This table provides a reference to the vendor IDs needed in order to add USB device support on Linux. The USB Vendor ID is the value given to the ATTR{idVendor} property in the rules file, as described above.
Company USB Vendor ID
Acer 0502
ASUS 0B05
Dell 413C
Foxconn 0489
Garmin-Asus 091E
Google 18D1
HTC 0BB4
Huawei 12D1
K-Touch 24E3
KT Tech 2116
Kyocera 0482
Lenevo 17EF
LG 1004
Motorola 22B8
NEC 0409
Nook 2080
Nvidia 0955
OTGV 2257
Pantech 10A9
Pegatron 1D4D
Philips 0471
PMC-Sierra 04DA
Qualcomm 05C6
SK Telesys 1F53
Samsung 04E8
Sharp 04DD
Sony Ericsson 0FCE
Toshiba 0930
ZTE 19D2
Managing Projects
Projects act as containers for storing things such as code and resource files. The SDK tools expect your projects to follow a specific structure so it can compile and package your application correctly, so it is highly recommended that you create them with Eclipse and ADT or with the android tool on the command line. There are three types of projects, and they all share the same general structure but differ in function:
Android Projects
An Android project is the container for your application's source code, resource files, and files such as the Ant build and Android Manifest file. An application project is the main type of project and the contents are eventually built into an .apk file that you install on a device.
Test Projects
These projects contain code to test your application projects and are built into applications that run on a device.
Library Projects
These projects contain shareable Android source code and resources that you can reference in Android projects. This is useful when you have common code that you want to reuse. Library projects cannot be installed onto a device, however, they are pulled into the .apk file at build time.
When you use the Android development tools to create a new project, the essential files and folders will be created for you. There are only a handful of files and folders generated for you, and some of them depend on whether you use the Eclipse plugin or the android tool to generate your project. As your application grows in complexity, you might require new kinds of resources, directories, and files.
Android Projects
Android projects are the projects that eventually get built into an .apk file that you install onto a device. They contain things such as application source code and resource files. Some are generated for you by default, while others should be created if required. The following directories and files comprise an Android project:
src/
Contains your stub Activity file, which is stored at src/your/package/namespace/ActivityName.java. All other source code files (such as .java or .aidl files) go here as well.
bin
Output directory of the build. This is where you can find the final .apk file and other compiled resources.
jni
Contains native code sources developed using the Android NDK. For more information, see the Android NDK documentation.
gen/
Contains the Java files generated by ADT, such as your R.java file and interfaces created from AIDL files.
assets/
This is empty. You can use it to store raw asset files. Files that you save here are compiled into an .apk file as-is, and the original filename is preserved. You can navigate this directory in the same way as a typical file system using URIs and read files as a stream of bytes using the the AssetManager. For example, this is a good location for textures and game data.
res/
Contains application resources, such as drawable files, layout files, and string values. See Application Resources for more information.
anim/
For XML files that are compiled into animation objects. See the Animation resource type.
color/
For XML files that describe colors. See the Color Values resource type.
drawable/
For bitmap files (PNG, JPEG, or GIF), 9-Patch image files, and XML files that describe Drawable shapes or a Drawable objects that contain multiple states (normal, pressed, or focused). See the Drawable resource type.
layout/
XML files that are compiled into screen layouts (or part of a screen). See the Layout resource type.
menu/
For XML files that define application menus. See the Menus resource type.
raw/
For arbitrary raw asset files. Saving asset files here instead of in the assets/ directory only differs in the way that you access them. These files are processed by aapt and must be referenced from the application using a resource identifier in the R class. For example, this is a good place for media, such as MP3 or Ogg files.
values/
For XML files that are compiled into many kinds of resource. Unlike other resources in the res/ directory, resources written to XML files in this folder are not referenced by the file name. Instead, the XML element type controls how the resources is defined within them are placed into the R class.
xml/
For miscellaneous XML files that configure application components. For example, an XML file that defines a PreferenceScreen, AppWidgetProviderInfo, or Searchability Metadata. See Application Resources for more information about configuring these application components.
libs/
Contains private libraries.
AndroidManifest.xml
The control file that describes the nature of the application and each of its components. For instance, it describes: certain qualities about the activities, services, intent receivers, and content providers; what permissions are requested; what external libraries are needed; what device features are required, what API Levels are supported or required; and others. See the AndroidManifest.xml documentation for more information
project.properties
This file contains project settings, such as the build target. This file is integral to the project, so maintain it in a source revision control system. To edit project properties in Eclipse, right-click the project folder and select Properties.
local.properties
Customizable computer-specific properties for the build system. If you use Ant to build the project, this contains the path to the SDK installation. Because the content of the file is specific to the local installation of the SDK, maintained it in a source revision control system. If you use Eclipse, this file is not used.
ant.properties
Customizable properties for the build system. You can edit this file to override default build settings used by Ant and also provide the location of your keystore and key alias so that the build tools can sign your application when building in release mode. This file is integral to the project, so maintain it in a source revision control system. If you use Eclipse, this file is not used.
build.xml
The Ant build file for your project. This is only applicable for projects that you build with Ant.
Library Projects
An Android library project is a development project that holds shared Android source code and resources. Other Android application projects can reference the library project and, at build time, include its compiled sources in their .apk files. Multiple application projects can reference the same library project and any single application project can reference multiple library projects.
Note: You need SDK Tools r14 or newer to use the new library project feature that generates each library project into its own JAR file. You can download the tools and platforms using the Android SDK and AVD Manager, as described in Adding SDK Components.
If you have source code and resources that are common to multiple Android projects, you can move them to a library project so that it is easier to maintain across applications and versions. Here are some common scenarios in which you could make use of library projects:
If you are developing multiple related applications that use some of the same components, you move the redundant components out of their respective application projects and create a single, reuseable set of the same components in a library project.
If you are creating an application that exists in both free and paid versions. You move the part of the application that is common to both versions into a library project. The two dependent projects, with their different package names, will reference the library project and provide only the difference between the two application versions.
Structurally, a library project is similar to a standard Android application project. For example, it includes a manifest file at the project root, as well as src/, res/ and similar directories. The project can contain the same types of source code and resources as a standard Android project, stored in the same way. For example, source code in the library project can access its own resources through its R class.
However, a library project differs from an standard Android application project in that you cannot compile it directly to its own .apk and run it on an Android device. Similarly, you cannot export the library project to a self-contained JAR file, as you would do for a true library. Instead, you must compile the library indirectly, by referencing the library in the dependent application and building that application.
When you build an application that depends on a library project, the SDK tools compile the library into a temporary JAR file and uses it in the main project, then uses the result to generate the .apk. In cases where a resource ID is defined in both the application and the library, the tools ensure that the resource declared in the application gets priority and that the resource in the library project is not compiled into the application .apk. This gives your application the flexibility to either use or redefine any resource behaviors or values that are defined in any library.
To organize your code further, your application can add references to multiple library projects, then specify the relative priority of the resources in each library. This lets you build up the resources actually used in your application in a cumulative manner. When two libraries referenced from an application define the same resource ID, the tools select the resource from the library with higher priority and discard the other.
Once you have added references to library projects to your Android project, you can set their relative priority. At build time, the libraries are merged with the application one at a time, starting from the lowest priority to the highest.
Library projects can reference other library projects and can import an external library (JAR) in the normal way.
Development considerations
As you develop your library project and dependent applications, keep the points listed below in mind:
Resource conflicts
Since the tools merge the resources of a library project with those of a dependent application project, a given resource ID might be defined in both projects. In this case, the tools select the resource from the application, or the library with highest priority, and discard the other resource. As you develop your applications, be aware that common resource IDs are likely to be defined in more than one project and will be merged, with the resource from the application or highest-priority library taking precedence.
Use prefixes to avoid resource conflicts
To avoid resource conflicts for common resource IDs, consider using a prefix or other consistent naming scheme that is unique to the project (or is unique across all projects).
You cannot export a library project to a JAR file
A library cannot be distributed as a binary file (such as a JAR file). This will be added in a future version of the SDK Tools.
A library project can include a JAR library
You can develop a library project that itself includes a JAR library, however you need to manually edit the dependent application project's build path and add a path to the JAR file.
A library project can depend on an external JAR library
You can develop a library project that depends on an external library (for example, the Maps external library). In this case, the dependent application must build against a target that includes the external library (for example, the Google APIs Add-On). Note also that both the library project and the dependent application must declare the external library in their manifest files, in a <uses-library> element.
Library projects cannot include raw assets
The tools do not support the use of raw asset files (saved in the assets/ directory) in a library project. Any asset resources used by an application must be stored in the assets/ directory of the application project itself. However, resource files saved in the res/ directory are supported.
Platform version must be lower than or equal to the Android project
A library is compiled as part of the dependent application project, so the API used in the library project must be compatible with the version of the Android library used to compile the application project. In general, the library project should use an API level that is the same as — or lower than — that used by the application. If the library project uses an API level that is higher than that of the application, the application project will not compile. It is perfectly acceptable to have a library that uses the Android 1.5 API (API level 3) and that is used in an Android 1.6 (API level 4) or Android 2.1 (API level 7) project, for instance.
No restriction on library package names
There is no requirement for the package name of a library to be the same as that of applications that use it.
Each library project creates its own R class
When you build the dependent application project, library projects are compiled and merged with the application project. Each library has its own R class, named according to the library's package name. The R class generated from main project and the library project is created in all the packages that are needed including the main project's package and the libraries' packages.
Library project storage location
There are no specific requirements on where you should store a library project, relative to a dependent application project, as long as the application project can reference the library project by a relative link. What is important is that the main project can reference the library project through a relative link.
Test Projects
Test projects contain Android applications that you write using the Testing and Instrumentation framework. The framework is an extension of the JUnit test framework and adds access to Android system objects. The file structure of a test project is the same as an Android project.
src/
Includes your test source files. Test projects do not require an Activity .java file, but can include one.
gen/
This contains the Java files generated by ADT, such as your R.java file and interfaces created from AIDL files.
assets/
This is empty. You can use it to store raw asset files.
res/
A folder for your application resources, such as drawable files, layout files, string values, etc. See Application Resources.
AndroidManifest.xml
The Android Manifest for your project. See The AndroidManifest.xml File. Test Projects have a special <instrumentation> element that connects the test project with the application project.
project.properties
This file contains project settings, such as the build target and links to the project being tested. This file is integral to the project, so maintain it in a source revision control system. To edit project properties in Eclipse, right-click the project folder and select Properties.
local.properties
Customizable computer-specific properties for the build system. If you use Ant to build the project, this contains the path to the SDK installation. Because the content of the file is specific to the local installation of the SDK, it should not be maintained in a Source Revision Control system. If you use Eclipse, this file is not used.
ant.properties
Customizable properties for the build system. You can edit this file to override default build settings used by Ant and provide the location to your keystore and key alias, so that the build tools can sign your application when building in release mode. This file is integral to the project, so maintain it in a source revision control system. If you use Eclipse, this file is not used.
build.xml
The Ant build file for your project. This is only applicable for projects that you build with Ant.
Testing a Library Project
There are two recommended ways of setting up testing on code and resources in a library project:
You can set up a test project that instruments an application project that depends on the library project. You can then add tests to the project for library-specific features.
You can set up a set up a standard application project that depends on the library and put the instrumentation in that project. This lets you create a self-contained project that contains both the tests/instrumentations and the code to test
Wow - a very content packed blog.Nice blog with some very useful info
ReplyDeleteSocialkik